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Introduction
Multi-Agent Path Finding (MAPF) finds collision-free paths
for multiple agents on a graph, assuming all agents move
synchronously with equal action duration. This may limit
real-world use, where agents often have different speeds
or edge traversal times. To bypass this assumption on syn-
chronous actions, a few variants of MAPF were studied,
such as Continuous-Time MAPF (Andreychuk et al. 2022),
MAPF with Asynchronous Actions (MAPF-AA) (Ren,
Rathinam, and Choset 2021), MAPFR (Walker, Sturtevant,
and Felner 2018). Most of these algorithms seek an optimal
or bounded sub-optimal solution at the cost of limited scala-
bility as the number of agents grows. Our prior work (Zhou,
Zhao, and Ren 2025) developed an unbounded sub-optimal
planner Loosely Synchronized Rule-based Planning (LSRP)
for MAPF-AA. LSRP can handle a large number of agents
but often finds poor quality solutions due to its unbounded
sub-optimality. In this work, we introduce LSRP∗, an any-
time variant of LSRP that can keep improving solution qual-
ity till a given runtime budget depletes.

Anytime algorithms that can iteratively improving solu-
tion quality exist for MAPF, e.g., LaCAM (Okumura 2023).
However, developing such an algorithm for MAPF-AA
is non-trivial. MAPF-AA adopts duration conflict, where
an agent occupies both its departure and arrival vertices
throughout the duration of an action, and a conflict arises
when two agents occupy the same vertex during overlap-
ping intervals. The planner must account for the varying
time dimensions of different agents and avoid duration con-
flicts, resulting in a significantly more complex state space
than in MAPF. Fig 1 demonstrates an example, goal loca-
tion of agents A1, A2 are vertices D,C respectively. Fig 1
(a) and (b) shows a plan with costs of 100 and 78, respec-
tively. In both cases, the same joint vertex v = (B,E) is
reached, where plan (a) has a smaller cost to v ((10, 40) vs.
(13, 45)). If we apply pruning in classical MAPF, which is
purely based on the cost at joint vertices, plan (b) would be
discarded, missing a better solution.
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Figure 1: Goal locations of agents A1, A2 are D,C respec-
tively. Black arrows denote current actions, with brackets
showing their departure and arrival times; colored arrows
represent each agent’s subsequent path to its goal. (a) and
(b) show two possible partial plans during the search, both
reaching the same joint vertex (B,E). In (a), A1 waits at
vertex B to avoid a duration with A2, resulting in a cost of
100. In (b), both agents reach the joint vertex later but incur
a smaller total cost of 78.

To address this, LSRP∗ employs the successor generation
and pruning strategy of LSS (Ren, Rathinam, and Choset
2021) to systematically explore the state space, ensuring
both optimality and completeness. Experiments show that
LSRP∗ achieves up to 25× greater scalability than existing
baselines and can reduce solution costs by up to 40% within
a reasonable time budget.

Method
LSRP∗ searches in a time-augmented join state space with
three components:
• Search Tree: The search node n of a search tree repre-

sents the joint action (either move or wait) that all agents
are performing. Let Icurr(n) denote the set of agents
who have the minimum action finish time (either move or
wait). All possible joint actions of the agents in Icurr(n)
define the children of n in the search tree.

• Action Tree: All joint actions of agents in Icurr(n) are
generated by an action tree AT . Each depth of AT is
associated with the a specific agent in Icurr(n), and the
max depth of AT is the size of Icurr(n). The children
of a tree node are generated by enumerating all possible
collision-free actions that consider all determined actions
from ancestors. Fig 2(b) illustrate an example.



Figure 2: A toy example showing the search tree of LSRP∗

and the action tree of the initial search node. (a) The or-
ange search node has actions planned by LSRP, and all gray
search nodes only have the actions determined by action
tree expansion.(b) A fully expanded action tree of the ini-
tial search node n0.

• Rule-based Planner: The search space increases expo-
nentially with the number of agents, so LSRP∗ explores
the search tree in a depth-first manner due to the memory
constraint. However, this may cause the search to take a
large number of iterations to find a feasible solution. To
resolve this issue, LSRP∗ employs LSRP to quickly find
feasible solutions. Fig 2(a) illustrate an example.

Remark 1. Leaf nodes of an action tree is equivalent to
neighbors in LSS, which implies that LSRP∗ inherits all the-
oretical properties of LSS, e.g., optimality. The differences
are: 1. LSS searches in a best-first manner, while ours is
depth-first; 2. The search tree of LSRP∗ also includes suc-
cessors that are non-leaf nodes of an action tree, which are
generated by LSRP. Additionally, the rule-based planner can
be replaced by other variants of LSRP, e.g. LSRP-SWAP (de-
note as LSRP∗-SWAP) for better performance.

Experiment Results
We evaluate LSRP∗ and LSRP∗-SWAP on four maps. For
each map, we run 20 instances with varying number of
agents N and compare against three baselines: (1) LSRP and
LSRP-SWAP, (2) CCBS (Andreychuk et al. 2022), where we
do the same modification as (Zhou, Zhao, and Ren 2025) and
choose it over LSS due to its better scalability. We evaluate
scalability and solution quality of LSRP∗ and LSRP∗-SWAP
under runtime limits of 30 and 60 seconds, respectively. As
shown in Fig. 3, LSRP∗-SWAP scales best, reaching the
benchmark’s upper agent limit across all maps, especially on
sparse graphs like Room64 and Den312d. In cluttered envi-
ronments such as Warehouse and Random32, LSRP∗-SWAP
still performs competitively and outperforms other methods
including LSRP∗. For solution quality (Fig. 4), we use sum
of costs (SoC) and compare LSRP∗-SWAP against LSRP-
SWAP and CCBS on instances that are successfully solved
by both planners. LSRP∗-SWAP consistently produces re-
sults up to 40% cheaper than LSRP-SWAP and is close in
quality to CCBS, with differences not exceeding 40%. With
many agents (e.g., 1000 agents), the advantage of LSRP∗-

Figure 3: Success Rate Results

Figure 4: Solution Cost Ratio Results: solution cost that
LSRP∗ finds against baseline LSRP-SWAP or CCBS.

SWAP decreases as the time budget becomes insufficient for
further optimization.
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